
Analyzing the Spectral Components of Noisy Signals with Arduino

Ethan Waxman
Physics Department, Cornell University

ejw99@cornell.edu
(Dated: September 10, 2025)

This report outlines the process of developing a simple system to measure the frequency spectrum
of a noisy signal. An Arduino is used to measure the signal and a noise reduction algorithm is
applied to clean up the signal. A Fast Fourier Transform is then performed on the signal, before
the fundamental frequencies are then played back out of a speaker.

I. INTRODUCTION

The story goes that noise cancelling headphones were
created by Dr. Bose himself, on a transatlantic flight. Al-
legedly, the din of the plane’s engines were kept Dr. Bose
from sleep, and so he came up with the mathematics for
noise-cancelling headphones right there [1]. Regardless
of the validity of this story, it strikes at a deeper ques-
tion that permeates the scientific community. How do we
reduce the amount of noise in our measurements?

For my skill experiment, I wanted to better familiarize
myself with the field of noise reduction, as well as to
gain experience working with some of the more common
tools that we use in the lab. As such, the project that
I landed on was an extension of a previous experiment
that I did for the undergraduate circuits class. In the
experiment, students took a steady signal produced by a
function generator and added noise to it until the original
signal could not be seen. Then, students were asked to
implement a simple noise reduction algorithm to regain
the original signal that was delivered from the function
generator.

To expand on this experiment, I wanted to do some-
thing similar, but using sound waves instead of electrical
signals, as this would require learning about transduc-
tion. Additionally, I wanted to take the experiment a
step further by performing a Fourier Transform on the
cleaned up signal, to see how much the noise made an
impact on the underlying information that the waveform
carried.

The project, as it was implemented, consists of four
stages. The first stage is the input. Sound must be
collected from an outside source and transmitted to an
Arduino for processing. This requires a microphone to
serve as a transducer from the physical soundwave to the
electrical signal. The second stage is to process the noisy
signal and clean it up. This requires no hardware beyond
the Arduino, but does require an algorithm to reduce the
noise. The third stage is to compute the Fourier Trans-
form of the cleaned up signal. Like stage two, this doesn’t
require any hardware, just computing. The final stage is
to play the tones found in the frequency spectrum back
out into the world. Only a speaker is needed to do this.

II. EQUIPMENT

To carry out the experiment, I required several pieces
of hardware. Namely, these were an actual Arduino
board, a microphone, an operational amplifier, and a
speaker.

A. Arduino

The most important piece of equipment for the experi-
ment was the CPU that was going to do all of the control
and processing. The CPU that I chose was the Arudino
MKR 1000 Wifi.

Initially, I had been worried that the Arduino MKR
1000 Wifi would have too little memory. The online shop
claims that the board only has 256 KB of flash memory
[2]. It was not clear that this would be enough space to
maintain both the read in data as well as to perform a
Fourier Transform on it. Luckily, however, in the end
only about 20% of the space was used on the board, and
no space issues occurred.

B. Microphone

The microphone that I was provided is called an elec-
tret microphone. Electret microphones work via two
charged plates. One of them is fixed, and the other is
free to move. When a sound wave hits the free plate,
it causes the plate to vibrate with the frequency of the
sound. The changing electric field associated with this
movement induces a current in the other plate, which is
then sent down a wire to whatever device may be reading
it [3]. Although these microphones are incredibly useful,
the main drawback of them is that they only produce sig-
nals on the scale of millivolts, a fact I only realized after
attaching the microphone to the Arduino. Arduinos deal
with signals with magnitudes between 0 and 5 volts, so
the microphone was insufficient as a transducer for the
sound wave. A method of magnifying the microphone’s
signal was required.



2

FIG. 1. This circuit allows the op amp to boost the signal
from the electret microphone.

C. Operational Amplifier

Luckily, an easy solution existed for the microphone
problem in the form of an operational amplifier or op
amp. An op amp is an integrated circuit with high gain.
In other words, when a signal is input to it, the output
signal is the same, but with the amplitudes increased
(some caveats occur when the output signal goes beyond
the ”rails” of the device). So, the signal from the mi-
crophone could be sent through an op amp before it was
sent to the Arduino. This way, the signal at the Arduino
would be strong enough for it to be used properly. I was
able to find a circuit online for using the microphone in
conjunction with the op amp [4]. Building the circuit was
rather straightforward using the breadboard and wiring
from the kit that was provided with the Arduino. The
only issue occurred in the lack of a 100 kilo-ohm resis-
tor, but this was easily fixed by using a collection of 10
kilo-ohm resistors assembled in series.

D. Speaker

The last necessary component was the speaker. This
was the most straightforward component, and no unex-
pected challenges arose dealing with it.

III. SOFTWARE

The other half of the project was the software. The two
algorithms that the system relied on were noise reduction
and the Fourier Transform.

FIG. 2. The fully assembled system.

A. Noise Reduction

The first algorithm is the noise reduction algorithm.
For this project, a simple yet surprisingly effective algo-
rithm was used.

The idea behind the algorithm relies on the observation
that in a noisy signal, the noise is (on average) just as
likely to be above the original signal as it is to be below
it. So, if we take a noisy signal with a repetitive signal
hidden inside it, and add up the amplitude at the same
position over a large number n cycles, then the signal
size will grow as n, while the noise will only grow as

√
n

[5]. This will greatly increase the signal to noise ratio,
and we will be able to reclaim the original signal from
the noise.

Unfortunately, one drawback of using this approach to
noise reduction is that it requires the signal strength to
be measured at the same time each cycle. This means
that some sense of the signal must be known beforehand,
so that the measurements can be taken in the same place.

In the actual implementation for the project, I decided
that I would set the played tones to have frequencies such
that every 100 ms, a cycle would be completed. More
than one cycle could be completed per 100 ms (in fact,
many more), but this requirement allowed the signal to
be measured in 100 ms intervals, and then these intervals
could be summed. Since intervals ended on an integer
number of cycles, it must be the case that at the start of
the next interval, the signal was in the same place as at
the start of the previous interval.

The main drawback to this restriction is that it limited
the realism of the experiment. In the real world, there is
no promise that signals are repetitive, much less that we
know anything about exactly when the signal will restart.
To overcome this frequency limitation in the related ex-
periment from circuits, the function generator was synced
with the Arduino. However, with sound waves, there is
no way to sync it up without imposing a restriction such
as this.



3

B. Fourier Transform

The more complicated algorithm that needed to be im-
plemented for the project was the Fourier Transform.

The Fourier Transform is a technique that obtains the
frequency spectrum of a continuous function. So, in prin-
ciple, if the transform is applied to a composite sound
wave, the output will give the underlying frequencies that
make up the wave. However, the standard Fourier Trans-
form requires that the function be continuous. Since the
actual sound wave is not given, but instead only a col-
lection of samples, a different technique must be used.
This technique is called the Discrete Fourier Transform
of DFT. The DFT is a method by which to approximate
the Fourier Transform. The DFT takes the continuous
integral from the Fourier Transform and converts it into
a discrete sum along the sampled data points[6]. The
more data points that there are, the more accurate the
approximation.

It turns out, however, that the DFT is a compara-
tively slow algorithm for computing the Fourier Trans-
form. There is another algorithm, aptly called the ”Fast
Fourier Transform” (or FFT) that is faster than the DFT.
To borrow terminology from computer science, the DFT
runs in O(n2) time, while the FFT runs in O(n · log2(n))
time. What this means is that the time that the DFT
algorithm takes grows proportional to n2, where n is the
number of samples. Likewise, the execution time of the
FFT only grows as n · log2(n).
This speed up might not seem like a ton, but a quick

comparison will show otherwise. A simplifying assump-
tion that can be made is to say that if n data points are
given to the DFT, then n2 operations are needed to calcu-
late the Fourier Transform. Then, on a 1 GHz computer
(slow by today’s standard), processing 106 data points
(10 seconds worth of measuring every millisecond) would
take roughly 17 minutes. The FFT would process the
same data in 10 ms. If the data set was instead 107 data
points, the DFT would take about 28 hours. The FFT
would take 200 ms.

Clearly, the proper choice of algorithm can have an im-
mense impact on the usefulness of our labratory equip-
ment. Luckily, the FFT is a well known algorithm, and
an easy to use implementation of it is provided in ”Nu-
merical Recipes”[6].

IV. RESULTS

Once all of the parts were gathered and the software
figured out, assembly was particularly easy. Due to the
nature of the Arduino, most of the process was just plug-
ging the different components into the pins of the at-
tached breadboard. To upload the software, a ”sketch”
was created in the Arduino IDE, and sent directly to the
device via a USB cable. Upon receiving the code, the Ar-
duino immediately began to run the script. In addition
to keeping a copy on board, at each stage the Arduino

FIG. 3. The noisy signal compared to the actual signal.

FIG. 4. The noise reduced signal compared to the actual
signal.

printed the data to the serial monitor so as to keep a
more permanent copy of the data.

Due to the nature of the project, there is not a partic-
ularly easy way to demonstrate the results. However, it
seemed like it might be instructive to calculate the mean
squared error of the noisy signal against the actual input,
and to compare that with the mean squared error of the
noise reduced signal against the actual input. For the in-
put wave that corresponds to the shown figures, an equal
superposition of 200Hz and 300Hz the mean squared
error for the noise against the input wave is 8.6E − 2.
The mean squared error for the noise reduced signal was
4.2E − 4. A similar exercise was not replicated with the
Fourier Transform, but the size of the MSE for the sig-
nals, as well as the figures, both indicate that the two
frequency spectra were very similar.

The experiment seems to indicate that this method of
noise reduction does work in the proper circumstances,
even on sound waves. However, as noted earlier, it feels
as if these circumstances might be a bit too contrived



4

FIG. 5. The Fourier Transform of the actual signal.

FIG. 6. The Fourier Transform of the noise reduced signal.

to present any real world application. The requirement
that the sound be repetitive may be applicable to a situ-
ation like that of Dr. Bose, where a user might be sitting
next to a plane engine, but there seems to be no reason
that a similar restriction could be placed on the people
on said plane. Even if a signal is repetitive, the system
required that measurements be taken at the same point
in a cycle, which clearly can’t be done without some a
priori knowledge about the signal.

However, despite the feasibility of the project as a real
world noise reduction system, the process of creating it
has highlighted some of the challenges that are apparent
in noise cancellation systems. These systems must be
fast, operate on limited CPU space, and not make any
unjustified assumptions about the sound. As such, this
project did in fact serve as a useful prototyping experi-
ence, as a way to better understand the characteristics

of the ideal system.
V. SKILLS GAINED

Despite the fact that the project might not have been
particularly useful, it was definitely both educational and
enjoyable. It focused on a topic that I was interested in,
and in the process of assembly and execution, I learned
a lot about tools and procedures that can be helpful in
the physics laboratory.
To be concrete, this project considerably developed my

understanding of how to use the Arduino boards. These
boards can be used for a variety of automation tasks and
can be incredibly useful for taking measurements. In my
previous coursework, I had gotten some experience with
them, but the instructions on how to use them had been
very well specified, and the code given to us ahead of
time. I had never been able to experiment with one my-
self, and had never been given the opportunity to write
my own code as I see fit. As such, getting a chance to do
exactly that with this project gave me a lot of experience
with the boards that I hadn’t had before. It was enjoy-
able to do so, and it opened my eyes to the possibilities
that these machines could be used for.
Moreover, this project helped to develop my under-

standing of the Fourier Transform. In most theoretical
physics classes, we have a continuous input function, and
so calculating the transform is just an exercise in complex
integrals. However, dealing with them in the laboratory
is a very different experience. While I had heard of the
Discrete Fourier Transform, I had no real knowledge of it,
and especially not the runtime complexity of it. Learning
that there was not only an alternate way to calculate it,
but one that could save me hours of time was shocking
to say the least. It really helped me to understand both
how the proper choice of algorithm can be incredibly im-
portant and how things we take for granted in theoretical
areas, like the Fourier Transform, can be much less obvi-
ous and accessible when we get into the lab.

VI. CONCLUSION

In this project, I built a system that read in noisy
signals, cleaned them up, and decomposed them into
their underlying frequencies. In doing so, I developed
a better understanding of the Arduino system, as well as
algorithms that physicists use to do computations that
are theoretically easy but practically hard. The system
seems to work well, but only in contrived circumstances.
Although it may not be realistically useful, the act of
actually planning and creating it developed my under-
standing of what problems a noise reduction system faces
when providing noise cancellation technology.

[1] Bose aviation history, https://boseaviation.com/

about/history/, accessed: September 10, 2025.
[2] Arduino mkr 1000 wifi - online shop, https://store-usa.

arduino.cc/products/arduino-mkr1000-wifi, accessed:



5

September 10, 2025.
[3] Electret condeser microphones,

https://www.abcomponents.co.uk/

electret-condenser-microphones/, accessed, Septem-
ber 10, 2025.

[4] S. Campbell, How to use microphones on
the arduino, https://www.circuitbasics.com/

how-to-use-microphones-on-the-arduino/, accessed,
September 10, 2025.

[5] E. J. Kirkland, Phys-3300/ AEP-3360 Laboratory Manual
2023-2024 (2023).

[6] William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, Brian P. Flannery, Numerical Recipes: The Art of
Scientific Computing (Cambridge University Press, 2007).


